EUROGRAPHICS 2019 / P. Alliez and F. Pellacini
(Guest Editors)

Volume 38 (2019), Number 2

Generating Stochastic Wall Patterns On-the-fly with Wang Tiles

Alexandre Derouet-J. ourdanl®, Marc Salvati' and Théo Jonchier

2

1OLM Digital Inc, Japan
2ASALI-SIR, XLIM, France

(b)

Figure 1: (a) Wall painted by an artist. (b) Stochastic wall pattern generated using our on-the-fly procedural algorithm. (c) Final texture
after adding details. Our algorithm generates a line structure similar to the one created by the artist. This structure is used to generate brick
colors and details around the edges. The global material appearance has been generated using texture bombing techniques.

Abstract

The game and movie industries always face the challenge of reproducing materials. This problem is tackled by combining
illumination models and various textures (painted or procedural patterns). Generating stochastic wall patterns is crucial in
the creation of a wide range of backgrounds (castles, temples, ruins...). A specific Wang tile set was introduced previously to
tackle this problem, in an iterative fashion. However, long lines may appear as visual artifacts. We use this tile set in a new
on-the-fly procedure to generate stochastic wall patterns. For this purpose, we introduce specific hash functions implementing
a constrained Wang tiling. This technique makes possible the generation of boundless textures while giving control over the
maximum line length. The algorithm is simple and easy to implement, and the wall structure we get from the tiles allows to
achieve visuals that reproduce all the small details of artist painted walls.

CCS Concepts
e Computing methodologies — Texturing;

1. Introduction

The final look in movies and games is the result of the combination
of textures, 3D models and illumination models. It is usually more
efficient to increase the level of details through a texture rather
than directly into the 3D model. With the continuous improvement
in display technology (4k and 8k) and an increase of CPU/GPU
power, always higher resolution textures are required. The cost of
painting textures by hand is then increasing. Generating textures at
render time that preserve the organic feeling of hand painted ones is
the challenge that all shading artists face everyday. They typically
combine noises and patterns (fractal, Perlin, Gabor, cellular, flakes,

© 2019 The Author(s)
Computer Graphics Forum © 2019 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

Voronoi...) with some well designed BSDF to re-create a material
appearance.

Every movie and cartoon involves the creation of patterns to gen-
erate textures for backgrounds. In this context, we face the problem
of generating stochastic wall patterns for stone walls and paved
grounds as shown in Figure 2. These patterns appear in various
constructions such as castles, temples or ruins. The problem we
address in this paper focuses on generating the lines representing
the edges of the bricks forming the wall. These patterns are dif-
ferent from a regular wall pattern with unique size of bricks (see
Figure 3). Particularly, for aesthetic reasons, it is important that the
generated patterns follow two constraints:


https://orcid.org/0000-0002-3175-509X

A. Derouet-Jourdan, M. Salvati & T. Jonchier / Generating Stochastic Wall Patterns On-the-fly with Wang Tiles

(b)

Figure 2: Examples of stochastic walls. (a) Painting. (b) Photog-
raphy.

Figure 3: Photographies of regular wall patterns. Left: alternate
pattern. Right: square pattern.

e No cross: pattern where 4 bricks share a corner.
e No long lines: brick with edges aligned in sequences.

This is an important request from our artists. They need to con-
trol the focus and the points of interest in their renderings. Cross
patterns and long alignments of bricks tend to attract the eye (see
Figure 18). This is backed up by works in visual perception, where
it was shown that elongated blobs and crosses tend to be perceived
at an early stage of vision and tend to stand out [Bec83,JB83]. So
to prevent the background from attracting the eye of the viewer and
put the focus on the foreground, it is crucial to prevent long lines
and crosses from occurring in the wall pattern.

Previous efforts have been devoted to generating such patterns
[LDGO01,Miy90]. However, they do not always account for crosses
or long lines. Moreover, they are offline techniques by nature,
which means that the whole pattern must be created at once. In such
a case, it is impossible to generate unbounded textures or to access
only a part of it. In a production setting, being able to perform a
GPU preview of the result or to generate arbitrarily large textures is
important. This can be achieved by using an on-the-fly evaluation
of fully procedural techniques (defined on a boundless domain), i.e
aperiodic, parameterized, random-accessible and compact function
as defined in [LLC*10].

Our goal is to generate stochastic wall patterns on-the-fly while
accounting for crosses and long lines. Using such patterns, it is then
easy to produce complete textures by adding colors to the bricks,
noise on their edges and other details, as we present Section 3.3.

In a preliminary work, we introduced the use of Wang tiles to
create walls with no cross patterns [DJIMS15], albeit using an iter-
ative algorithm and generating long lines artifacts. Wang tiles have
become a standard tool in texture synthesis. They have the advan-
tage of producing stochastic patterns, while providing access to the
structure of the pattern. This feature is helpful to provide control
over the rendering and shading of the structure once the pattern is
generated. Also, as shown in previous work [LDOS5], it is possible
to design on-the-fly procedural methods to evaluate Wang tilings.

‘We showed in a previous work [KDJO16] that the long lines ar-
tifacts is related to the orientations of the Wang tiles and that the
issue can be addressed by precomputing their orientations in order
to break the long lines. We called this the dappling problem and
proposed an iterative algorithm to solve it.

In this paper, our contribution is to create a new and simple yet
general procedural algorithm with on-the-fly evaluation that gener-
ates stochastic wall patterns while avoiding cross patterns. In addi-
tion, our algorithm provides full control over the maximum length
of the lines. For this purpose, we propose an on-the-fly solution to
the dappling problem we introduced in [KDJO16]. The procedural
nature of the algorithm makes its GPU implementation straightfor-
ward (we provide one as additional material to the present paper).

After an overview of the related work, we explain the Wang tile
model we use and the limitations of current algorithms. We then
introduce our on-the-fly solution. Finally we present some result
analysis and discussion about the iterative flavors of the pattern
generation. We compare our results with state of the art texture
synthesis methods and another wall generation algorithm before
concluding about the future work.

Although we illustrate our method with the reproduction of hand
painted walls with cartoon style, there is no restrictions to use our
stochastic wall structure to render photo-realistic walls.

2. Related work

To create material appearance, artists use a combination of raster
textures and procedural textures. There is no limit but the skill of
the artist to what they may paint in a raster texture. Because of
the need of very high resolution textures, multiple methods have
been proposed to generate them. It is a very long studied problem
and it is out of the scope of the present paper to discuss it exten-
sively. In the following, we present a few techniques that have been
proposed to tackle this problem. We can distinguish solutions pro-
posed to this problem into two families, example-based techniques
and purely generative ones.

2.1. Example-based texture synthesis

Texture synthesis generates large size textures based on an ex-
emplar of limited size [DBP* 15, KSE*03,LH06, YBY *13]. These
methods either work by reproducing statistical properties of the ex-
emplar [GLLD12] or by aggregating patches of the exemplar lo-
cally, satisfying local continuity of the structure in the larger tex-
ture [LHO6, KNL*15]. Large textures can be generated on the fly
[VSLD13], without storing at any time the result in memory. For an
extensive overview of these methods, please consult [RDDM17].
As we show Section 5, the strong structure of the wall pattern is
hard to capture for such techniques. They produce bend lines, non-
rectangular bricks or arbitrarily long lines. Moreover, the control
over the final result is limited. For example it would be very hard to
control the color of individual bricks or the space between bricks of
a wall pattern produced by such a method. The reason is that even
if the visual structure is reproduced, the algorithm does not have
the knowledge of the underlying structure of the pattern.

© 2019 The Author(s)
Computer Graphics Forum © 2019 The Eurographics Association and John Wiley & Sons Ltd.



A. Derouet-Jourdan, M. Salvati & T. Jonchier / Generating Stochastic Wall Patterns On-the-fly with Wang Tiles

2.2. Rectangular packing and tiling

Outside of the computer graphics community, the problem of gen-
erating arrangements of rectangles has been extensively studied in
combinatorics and discrete mathematics. Domino tiling consists in
tiling a given polygon with rectangles of size 2 x 1 [KP80]. Tatami
tiling is a constrained domino tiling where no four dominos share
a corner, which correspond to our no cross constraint [ERWS11].
Another similar problem is the rectangular packing which consists
in packing with no overlap as many rectangles of various sizes in-
side a given larger rectangle [LMMO2]. In this case, the constraint
is to minimize the area of the larger rectangle that is not covered.

These works have a great theoretical value but are hard to apply
practically to our specific problem. Tatami tilings are limited to two
different sizes of rectangles, and the rectangular packing doesn’t
account for crosses and leaves holes in the pattern.

2.3. Purely generative texture synthesis

Purely generative methods like noises or pattern arrangements cre-
ate textures from a small set of parameters or a description of the
wanted result [Per85, Wor96, LLDD09, SP16,LHVT17]. For exam-
ple, texture bombing [Gla04] has been used successfully [SRVT14]
to generate on the fly the equivalent of 100k textures while preserv-
ing the hand painted feeling. We use this technique to add details
to the final result in Section 3.3.

Some dedicated techniques have been proposed [LDG01,Miy90]
to create wall patterns. However the control over the size of the
bricks and the occurrence of crosses and long lines remain an is-
sue. Also the iterative nature of those methods prevents an on-the-
fly evaluation. The technique we presented in [DJMS15] is based
on Wang tiles [Wan61] which have been introduced in computer
graphics to generate aperiodic stochastic textures [CSHDO03,Sta97].
They have been proven to be usable in an on-the-fly context [LDOS,
SD10, Wei04]. Although the technique presented in [DJMS15] ac-
counts for cross patterns, it cannot guarantee in itself that the lines
will remain short. We introduced in [KDJO16] an algorithm that
can be used to limit the lines’ lengths in the pattern by precom-
puting the orientations of the Wang tiles. Unfortunately, this ap-
proach is iterative and limited to fixed size textures and cannot be
adapted easily for an on-the-fly evaluation. Wang tiles have also
been used to generate point distributions with a blue noise Fourier
spectrum [KCODLO6]. In that paper, the authors introduce a hierar-
chical Wang tiling algorithm. Essentially, the algorithm first gener-
ates a tiling with a low resolution. Then the tiling is locally refined.
This way, the algorithm can produce point sets with non uniform
density.

In this paper, we propose a new procedural technique to evaluate
on-the-fly a Wang tiling specially tailored for the Wang tiles de-
signed in [DJMS15]. Our technique enforces a fixed upper bound
on the lines’ lengths in the pattern. It is inspired by [KCODLO06].
We first generate a subdivision of the texture space which has
the property of limiting the lines’ lengths, based on the ideas
from [KDJO16]. Then we construct the final tiling following the
subdivision. The Wang tiles we use allows us to solve both steps at
once, by generating the subdivision implicitly.

© 2019 The Author(s)
Computer Graphics Forum © 2019 The Eurographics Association and John Wiley & Sons Ltd.

3. Walls with Wang tiles

In this section we describe how we use Wang tiles to generate the
visual goal. First we recall the Wang tile model as introduced in
[DJMS15] and then we explain how to use the generated structure
to render the walls.

3.1. Wang tiles

Wang tiles are square tiles with colors on the edges as shown in
Figure 4. Tiles are placed edges to edges in the tiling space. A tiling
is valid when every two tiles sharing an edge have the same color
on this edge. We identify the problem of tiling to a problem of edge
coloring like in [LDOS5]. In that configuration, for a tile in (i, j), we
denote H; j.1, Vi j, H;j and Vi1 ; the top, left, bottom and right
edges, as well as their colors. Wang tiles have the characteristics of

Figure 4: Model of Wang tile. In a valid tiling, the color of a shared
edge is the same for the two tiles sharing the edge. The tile (i, j) is
made from the colors H; j11, Vi j, H; j and Vi j

providing local continuity on the edges of the tiles.

3.2. Wang tile model

The stochastic wall patterns we generate consist of a set of rect-
angular bricks in various sizes. They don’t contain cross patterns
as these break the randomness and attract the eye. That is the rea-
son why, when painting by hand, artists avoid such patterns (see
Figure 2 (a)).

Expressing stochastic wall patterns with Wang tiles is straight-
forward. Each tile models the corner junctions of four bricks. This
is done by mapping the four colors of each tile to the bricks’ edges’
placement as shown in Figure 5. However to avoid non rectangu-

Figure 5: Modeling a wall pattern with Wang tiles. Tile colors are
mapped to the bricks edges positions.

lar bricks (see Figure 6 (c) (d) (e)) and avoid cross patterns (see



A. Derouet-Jourdan, M. Salvati & T. Jonchier / Generating Stochastic Wall Patterns On-the-fly with Wang Tiles

| |
(@ ®) © @ ©

Figure 6: The tiles removed from the Wang tile set. (a) cross tiles
(H;jy1 =H; jand Vi j=Vi ). (c)(d) (e) non rectangular tiles/(b)
extra brick tiles (H; j1 # H; j and Vi1 j # Vi j).

Figure 6 (a)), the tile set is restricted. To enforce rectangular bricks
and avoid cross patterns, only "vertical" and "horizontal" tiles are
considered. These constraints are shown in Figure 7 and formulated
in Equations (1) and (2) . This avoids all the tiles introducing non

L
\
Figure 7: Correspondence between the brick pattern(left), the

Wang tile (center) and the orientation (right). Top line describes
horizontal tiles, and bottom line vertical ones.

rectangular bricks (such that H; j, | # H; j and Vi1 ; # V; j).

Vertical constraint H; ;1 = H; j and Vi1 ; # Vi ; (€))
Horizontal constraint H; ;1 #Z H; jand Vi 1 ;=V;;  (2)

This also excludes tiles introducing an extra brick in the center
(Figure 6 (b)). It would not be complicated to consider them, but
they introduce tiny bricks that stand out. For n. colors, we obtain a
tile set of size 2 nZ * (n- — 1) (see Figure 8 for the tile set with 3
colors, 36 tiles)

Figure 8: Tile set example with 3 colors, 36 possible tiles.

3.3. Rendering and shading

In this section we focus on the visual appearance of the bricks,
given a stochastic wall structure of rectangular bricks without cross
patterns. Observing the hand painted wall (see Figure 2), we notice
the following features created by the artist:

The global rock material.

Color variation for each brick.

Variable space between the bricks and corner roundness.
Highlights and scratches near the edges of the bricks.

In Figure 9, we decompose the painting and our rendering in those
features. We then explain how we use the stochastic wall pattern to
reproduce all those features.

(a) The global appearance: artist (left), texture bombing (right).

(b) The brick color painted: artist (left), from wall structure (right).

(¢) The lines and edge highlights: artist (left), from brick parameterization
(right).

Figure 9: Comparison of the features of both artist painted wall
(left) and the generated wall rendering (right).

Space between bricks, corner roundness and edge scratches are
features localized near brick edges. Thanks to the brick structure
we can generate a Cartesian parameterization as well as a polar
parameterization that includes corner roundness (see Figure 10).
From that structure, it’s easy to generate normal maps to be used in
a photo-realistic context.

Figure 10: UV parameterization of brick. Cartesian (left), polar
parameterization with corner roundness (right).

Distance to brick edges can be combined with some noise func-
tion to create irregular space between bricks (see Figure 9 (c)).
The same distance can also be used to localize and apply high-
lights and scratch textures (see Figure 9 (c)). The color variation
is simply enforced by generating a color based on the brick id or

© 2019 The Author(s)
Computer Graphics Forum © 2019 The Eurographics Association and John Wiley & Sons Ltd.



A. Derouet-Jourdan, M. Salvati & T. Jonchier / Generating Stochastic Wall Patterns On-the-fly with Wang Tiles

center position (see Figure 9 (b)). We can also use a texture map
to determine this color. As for the global material appearance it
may be obtained by a combination of hand-painted and procedural
textures. In our case we use texture bombing techniques as in the
brush shader [SRVT14] to generate all those details while keeping
the hand-painted touch (see Figure 9 (a)).

Without the wall/brick structure, such visual features would be
really difficult to reproduce.

4. Algorithm

This section presents our procedural algorithm for wall pattern gen-
eration. As seen in various procedural texture generation papers
like [Wor96], we make a correspondence between a given request
point P(x,y) and an underlying "virtual" grid cell (i, j) (for example
integer part of scaled coordinates). In our algorithm, we build two
functions A’ (i, j) and V' (i, j) implementing procedural tiling while
avoiding long lines:
Hij=W(ij) Vij=v(iJ)-

In the following sections, we start by explaining the long line prob-
lem inherent to [DJIMS15]. We start by giving a general procedural
solution (Section 4.2) that do not consider the long line problem.

Then we explain how to build 4’ and v/ on top of the general solu-
tion to avoid long lines procedurally in Section 4.3.

4.1. The long line problem

The Wang tile set we use has been introduced along with an algo-
rithm to generate a repeatable wall pattern in [DJIMS15]. However
long lines occur in walls generated by this algorithm (see Figure 11
and 12).

ﬂﬁf 1“;1 W“l‘ifi%”! HT Het
= H! [ 1\ 1‘1 |
T A e e L
NENTNNN oo o o N s I S NN
AL T T
1 B R o s e e e
| EEs B R | | BN s
e I e N o e 0 1 ] SR
R e L O e s 1 oy S M My
= 1 R S A N N [ ==
R S A e L

Figure 11: Long lines stand out and attract the eye in a wall pat-
tern.

The reason behind the occurrence of long lines in Figure 11 is
simple. Tiles are separated in two categories: the vertical and hor-
izontal ones. So the probability to have a horizontal/vertical line
of more than three tiles length is 1 /23 = 0.125. The occurrence of
long lines on the side in Figure 12 is inherent to the sequential al-
gorithm of [DJIMS15]. We can see that the length of the lines on
the side is increasing with the number of connections. In a sequen-
tial algorithm, the last tile of a row is solved with 3 constraints.
With n. connections the probability that the last constraints match
is roughly 1/n.. This means that the probability the last tile of a row
is horizontal is roughly 1/n.. The more connections you have, the
longer the vertical lines on the side are. For the same reasons long

© 2019 The Author(s)
Computer Graphics Forum © 2019 The Eurographics Association and John Wiley & Sons Ltd.

horizontal lines occur on the top. The stochastic variation of Wang
tiling [KCODLO06] does not suffer from this limitation. However
the stochastic nature of the algorithm makes difficult the control
of the length of the straight lines shown in Figure 11. The dap-

A e BRI e e e Y N N = 0 O T
T R T P L e e
e BN AR RN N i e o A o e e ‘

g ERNRRRSRRNE S RN i WL R BN NN R n I §
A A R 5y O A e A A RN £ MO e MBI
L T

e i S i £
R e Wl W B 0 o
e A R L e -
L A e e LT L

Figure 12: Notice the long lines on the side when the number of
connections is increasing (from left to right: 3, 5, 10 connections).

pling algorithm of [KDJO16] can be combined to the sequential
algorithm of [DIJMS15] to solve the issue of long lines for non-
repeatable walls. We use that algorithm as a general reference to
compare against our procedural approach in Section 5.

4.2. General solution

The general on-the-fly tiling method is based on a property of our
Wang tiles set, enunciated in [DJMS15], that a 2 x 2 square can
always be tiled, for any boundary coloring.

The idea is to cut the grid into 2 X 2 squares. We need to deter-
mine the color of their outer edges.

For each cell (i, j), we compute the bottom left cell index (i’, j),
which identify a 2 x 2 square, with

i=i—i%2 j =j—j%2,

where x%y is the positive remainder in the Euclidean division of x
by y.

We use h and v to associate pseudo-random values to the outer
edge color (Hy jryo, Hy jr, Hyyyjrs Hirgyjrva, Virjrers Viejos
Viry2,jr» Virg2,j7+1) as shown in Figure 13 (a):

h(lm/):H(lm/)%nC V(laf) :V(l,j)%l’l“

where H and V are hash function and associate "random" integer
values to (i, j). In practice we use a FNV hash scheme [FNV91]
to seed a xorshift random number generator from which we pick a
value.

However to satisfy the constraints (Equations (1) and (2)) of our
Wang tile model, we cannot use pseudo-random values for the inner
edge. We compute their colors using the result from [DJIMS15]: we
solve the interior of the 2 x 2 square by considering the different
cases on the border. This gives us the colors Hy jry1,Hy 1 j and
Vir jr41,Vir41,j7+1. Denoting iy and v, the function combining the
two coloring of the edges (both outer and inner edges of 2 x 2), we
have

RIS RPPE BRI (W)) if j%2 =0

Hij= ha(i,J) = { solved by 2 x 2 solver  otherwise,
oy vG)) if i%2 =0

Vij =vali,J) = { solved by 2 x 2 solver  otherwise.



A. Derouet-Jourdan, M. Salvati & T. Jonchier / Generating Stochastic Wall Patterns On-the-fly with Wang Tiles

An example of 2 x 2 solution is shown in Figure 13 (b).
[DJMS15] proves that there is a solution, without explicitly giving

‘ Hi’,j'+2‘ Hi’+lAjU‘r2 ‘ ‘ ‘
T & ®-- e vt
| | | - J'+
. | Vo2 o " "
Virijr+1 | | | | |
I T N g
I I I I 1} I 1} I
| | | NS |
| (l/ ]/) | | | | |
I I
V’ ’ | V. ’ ¢ V. ] ’
i’ | i'42,j" | ! t »J |
| | | | hd |
o * & - - R * - & - -
Hi/,j/ Hll+1,j/
(a) (b)

Figure 13: Given a set of colors (a), an example solution (b).

it. Solution can be built by constraints based or backtracking algo-
rithms. In our implementation, we choose to consider all possible
cases of color matching for opposite edges. It leads to 16 possible
cases that are listed in appendix A.

4.3. Restricting the line length with dappling

In Figure 14, we can see how the dappling algorithm of [KDJO16]
can produce random distributions while avoiding the long lines.
The vertical tiles are represented in red and the horizontal ones in

Figure 14: Left: without dappling, we can notice the long contin-
uous horizontal and vertical lines. Right: iterative dappling algo-
rithm from [KDJO16] (maximum line length of 2)

yellow. Vertical successions of red tiles and horizontal successions
of yellow tiles result in long lines. By combining this dappling al-
gorithm with the previous tiling algorithm of [DJMS15], it is pos-
sible to generate stochastic patterns with a given maximum length
of lines. However this approach is strictly iterative. We propose an
on-the-fly method to achieve similar results and restrict the longest
line length to an arbitrary value n.

The idea behind the dappling in [KDJO16] is to traverse the con-
figuration diagonally and correct the dappling when the number of
consecutive horizontal or vertical tiles is too large. It is not pos-
sible to use this method in an on-the-fly fashion as it necessitates
constructing the whole configuration until the requested cell. What
we propose is to force the correction, that is, we "preemptively"
correct the dappling automatically, whether the correction is nec-
essary or not. In the following, we explain the core idea behind
the on-the-fly evaluation of the dappling. Then, we explain how to
evaluate on-the-fly a tiling that satisfies the dappling constraints di-
rectly, without having to build explicitely the dappling beforehand.

We start with the case of an upper bound n greater than 2, and
then consider the special case of n = 2 which is simpler and can be
treated more efficiently.

4.3.1. Case of n >2

For a maximum number of n consecutive tiles of a same orien-
tation, we use 2 X 2 checkerboards (see Figure 15) on diagonals.
Each diagonal is separated from the other one by n — 2 cells hor-
izontally and vertically (see Figure 16). The cells inbetween the

Figure 15: 2 possible checkerboard patterns.

%

Figure 16: Dappling pattern for even n (left), odd n (right). For
even values of n, we use both checkerboard patterns randomly. For
odd values of n, we pick at random one of the two checkerboard
patterns and use it everywhere.

2 x 2 checkerboards are not constrained and can be oriented in any
way. It is easy to see that in such a case, there are no alignment
of more than n consecutive tiles with the same orientation (n — 2
for the cells inbetween and +-2 for the checkerboards). Because the
checkerboards are of size 2 X 2, this technique only works for even
values of n. It is possible to solve the same problem for odd values
of n: we use only one type of checkerboard and separate each diag-
onal from the other one by n — 1 cells horizontally and vertically.

To include it in the general solution of Section 4, we need to
adjust the hash functions s, and v, and replace them by dappling
enabled ones 7’ and v'.

2 x 2 checkerboards are aligned on the diagonal: i’ %n = j'%n,
with i’ =i —i%2,j' = j — j%?2. Considering a checkerboard with
its bottom left cell in (i’ j'), there is exactly one horizontal tile be-
tween two horizontal edges opposed on the outer border, H;: ;» and
Hy_jr+>. It means that we necessarily have h'(i', j') # h'(i', j' +2).
The same reasoning applies for v'. So we need to create 4’ and v
to enforce that condition.

hdl (17]7h(17]+2))

W(ij)=1 h,j)
solved by 2 x 2 solver
vai (i, j,v(i+2,j))
V(l,])— V(l,J)

solved by 2 x 2 solver

if j%2 =0and i'%n = j %n
if j%2 = 0 and i'%n # j'%n
if j%2 40
if i%2 = 0 and i’ %n = j' %n
if i%2 = 0 and i’ %n # j' %n
if i%2 # 0

©2019 The Author(s)

Computer Graphics Forum © 2019 The Eurographics Association and John Wiley & Sons Ltd.



A. Derouet-Jourdan, M. Salvati & T. Jonchier / Generating Stochastic Wall Patterns On-the-fly with Wang Tiles

This defines all the outer edges of the 2 x 2 squares. We then use
the general solution to solve each 2 x 2 locally. h;; and v4 com-
pute random colors different from their input and are defined in
Appendix A.

4.3.2. Caseof n =2

In the special case of n = 2, we just need to generate a dappling
with randomly chosen 2 x 2 checkerboards (from Figure 15).

The idea to create a hash function that generate such a dap-
pling is to consider the grid by pack of four cells, enforcing in
the middle the checkerboard condition (opposite outer edge color
are different). Similarly to the case n>2, we get the condition
Wi, j)# K@i, j +2). Since in this case n — 2 = 0, there is an-
other checkerboard with its bottom left corner in (i, j +2), mean-
ing W' (i, j +2) # W (i, j +4). Combining the two constraints we
geth' (i, j +2) =hp (', j/ +2,0 (', j), 1 (i, j/ +4). If we choose
W (i',j) and 1’ (i, j’ +4) arbitrarily, we can compute 4’ (i’, j' +2).
The same reasoning apply to v/ and can be summed up as

hao (i, j,h(i, j—2),h(i,j+2)) if j%4 =2

W (ij)=1q h(i.Jj) if j%4 =0
solved by 2 x 2 solver otherwise.

var (i, j,v(i—=2,j),v(i+2,j)) ifi%4=2

Vi, j) =< v(i,)) if i%4 =0
solved by 2 X 2 solver otherwise.

hgy and vgp compute random colors different from their input and
are defined in Appendix A.

5. Results and Discussion
5.1. Visual results and comparison

Thanks to our algorithm, we can control over the maximum length
of the lines of the stochastic wall pattern. Output result of the pat-
tern for maximum line length n = 1, n = 3, n = 5 are shown in
Figure 17. We could also reproduce the artist painted wall patten as
shown in Figure 1.

HT

n=1 n=3 n=>5

Figure 17: Output of our algorithm forn=1,n=3,n=>5

The algorithm from [DJMS15] has been used in production and
long lines were standing out (Figure 18 (left)). Limiting the max-
imum length to n = 2 with our new algorithm, the output looks
much more natural (Figure 18 (right)).

Existing methods failed to reproduce our wall pattern structure.
We tried the box packing method from [Miy90] (see Figure 19).
It produces elongated brick and does not give control over cross

© 2019 The Author(s)
Computer Graphics Forum © 2019 The Eurographics Association and John Wiley & Sons Ltd.

Figure 18: Production result using [DIMS15] (left), using our
algorithm (n = 2) (right). Our method breaks the long lines ar-
tifacts behind the character. These lines attract the eye, breaking
them restores the focus on the character. Pokémon Generations
Episode 3: The Challenger : ©2016 Pokémon. ©1995-2016 Nin-
tendo/Creatures Inc. /GAME FREAK inc.

NS
=
=

Figure 19: Box packing method

patterns or line length. We have access to the structure of the bricks,
but the method is iterative and cannot be evaluated on-the-fly.

Figure 20 and 21 we show the results of two patch-based meth-
ods [LHO6, KNL*15] on a hand-painted wall sample. These two
methods are designed to take into account not only the color of
each pixel but also its distance to features like the brick edges in
our case. Unfortunately, texture synthesis methods can only repro-
duce approximative look, introducing holes or bending the lines,
which makes them unsuited for production.

feature mask

exemplar

output

Figure 20: Result of [LHO6]. The mask is used to compute the dis-
tance to the bricks’ edges. The computation time is low (just a few
seconds). Although this method manages to keep the general as-
pect of a wall, we can see that a lot of bricks have non rectangular
shapes and that some edges are not properly connected.

5.2. GPU implementation

The GPU implementation of the procedural approach was straight-
forward in OpenGL3 and WebGL (we provide a ShaderToy imple-
mentation of the case n = 2). We use integer based hash functions



A. Derouet-Jourdan, M. Salvati & T. Jonchier / Generating Stochastic Wall Patterns On-the-fly with Wang Tiles

exemplar output

Figure 21: Result of [KNL* 15]. The result is impressive and close
to our goal. However, we can still see bended lines and non rectan-
gular bricks. Also, the computation time of the authors’ implemen-
tation is large (around 40 minutes).

in our production implementation. However, the integer support
seems to be limited in OpenGL, and we then switched to differ-
ent, float based hash functions.

We reach real time performance even with high number of pixel
samples as shown in Table 1.

Pixel Samples 1 2 8 16 32
VGA(1024x768) | 520 | 515 | 450 | 180 | 148
HD(1920x1080) | 200 | 220 | 187 | 70 | 60

Table 1: GPU algorithm performance (in frame per seconds).
GPU results have been obtained using a Nvidia Quadro K620.

5.3. Computation time and discussion

We measure and compare the performance of our on-the-fly eval-
uation against the general iterative algorithm, combination of the
sequential algorithm of [DJMS15] with the solution to the dap-
pling problem of [KDJO16]. Both algorithms give the same kind
of results, and computation time are given in Table 2. Although

Initialization | Time for 107 computation (x NP)
S/SD 2.1/2.5 790 (1x)
F/FD 0 3320 (4.2x)/3726 (4.7x)

Table 2: CPU algorithms performance measured in ms. Time for
the retrieval of a brick, using a 100x100 grid. Sequential algo-
rithm without/with dappling (S/SD n = 2). On-the-fly evaluation
without/with dappling(F/FD n =2)

the on-the-fly evaluation is 4 to 5 times slower than the iterative
version, in production rendering context, this timings remain neg-
ligible compared to the full rendering times. It represents 2% of
our wall rendering time (roughly 2 minutes per frame). The com-
putation time difference comes from the multiple evaluation of the
same tile in the on-the-fly approach. To compute one tile, it is nec-
essary to compute some local neighboring tiles. Without memory,
when we compute the next tile, some of the same neighboring tiles
are computed again. We are confident that this computation time
can be reduced by a carefully designed local cache system to avoid
some re-computations.

We evaluate the quality of the dappling results by computing
histograms of the number of consecutive tiles of same orienta-
tion in rows (see Figure 22). We use the original dappling method
from [KDJO16] for the sequential algorithm, because it is the most
general solution as far as we know. Figure 22 shows that the propor-

200000 160000
140000
100000
00000 s0000
60000
40000
PO 0 NP PD

Figure 22: Histogram of the vertical line length occurrence. Com-
parison between non procedural (NPD) and procedural (PD) ver-
sion. Left: with maximum line length n = 4. Right: with maximum
line length n = 10.

tion of lines with the same length are similar with either on-the-fly
evaluation and sequential algorithms. However we found a flaw in
the original algorithm from [KDJO16]. In the case n = 4, the num-
ber of lines of length 4 is oddly equivalent to line of length 3. Our
assumption is that every lines over 4 of length will be clamped to 4
and then artificially increase their occurrence, which inserts a bias
in the result. Our on-the-fly evaluation technique produces a better
line length distribution than the previous method.

The iterative approach is faster than our algorithm. It requires
memory proportional to the number of bricks. It is also customiz-
able and allows the caching of per brick information (color, ran-
domization values...). In the case of a small wall pattern, using
memory is not a big issue. But the fact that the memory used by this
approach is unbounded makes it problematic in the case of a very
large wall when the memory budget is tight. Our on-the-fly method
generates unbounded textures without any repetitions, without us-
ing memory, But its cost is an increased computation time because
it needs to recompute all the bricks information constantly. We be-
lieve that this cost could be reduced in some cases by crafting a
bounded memory local cache system. We are currently investigat-
ing this approach.

6. Conclusion and future work

By designing custom hash functions for our specific problem, we
succeed to provide a simple yet general solution to the generation of
stochastic wall patterns. Our algorithm is fully procedural, avoids
common visual artifacts and gives control to the user over the max-
imum line length. The computation overhead is low and the GPU
implementation enables preview of the result, making it ready to in-
tegrate into movie production pipeline, extending artists’ creation
palette.

We are now considering the inclusion of multi resolution Wang
tiles ( [KCODLO6]) or the combination of various sets of tiles to
enable more variations in the brick sizes and patterns. We are also
thinking about using border constrained 2D Wang tiling solutions
in the context of texture synthesis. We are also working on the 3D
procedural texture generation of stochastic wall patterns, and we

© 2019 The Author(s)
Computer Graphics Forum © 2019 The Eurographics Association and John Wiley & Sons Ltd.



A. Derouet-Jourdan, M. Salvati & T. Jonchier / Generating Stochastic Wall Patterns On-the-fly with Wang Tiles

think about extending those results to general voxelization prob-
lems. Our intuition is that the stochastic structure of the underlying
grid may improve the quality of volume rendering and collision
detections.

References

[Bec83] BECK J.: Textural segmentation, second-order statistics, and
textural elements. Biological Cybernetics 48, 2 (Sep 1983), 125-
130. URL: https://doi.org/10.1007/BF00344396, doi:
10.1007/BF00344396. 2

[CSHDO03] COHEN M. F., SHADE J., HILLER S., DEUSSEN O.: Wang
tiles for image and texture generation. In ACM SIGGRAPH 2003 Pa-
pers on - SIGGRAPH 03 (2003), Association for Computing Machin-
ery (ACM). URL: http://dx.doi.org/10.1145/1201775.
882265,do1:10.1145/1201775.882265. 3

[DBP*15] DIAMANTI O., BARNES C., PARIS S., SHECHTMAN E.,
SORKINE-HORNUNG O.: Synthesis of complex image appearance
from limited exemplars. ACM Transactions on Graphics 34, 2 (mar
2015), 1-14. URL: http://dx.doi.org/10.1145/2699641,
doi:10.1145/2699641.2

[DIMS15] DEROUET-JOURDAN A., MIZOGUCHI Y., SALVATI M.:
Wang Tiles Modeling of Wall Patterns. In Symposium on Mathemati-
cal Progress in Expressive Image Synthesis (MEIS2015) (2015), vol. 64
of MI Lecture Note Series, Kyushu University, pp. 61-70. 2, 3,5, 6,7, 8

[ERWS11] ERICKSON A., RUSKEY F., WooODCOCK J., SCHURCH

M.: Monomer-Dimer Tatami Tilings of Rectangular Re-
gions. Electronic Journal of Combinatorics 18, 1 (2011).
URL: http://www.combinatorics.org/Volume_18/

Abstracts/v18ilpl09.html. 3

[FNV91] FOWLER G., NoLL L. C., Vo P.: Fowler / Noll / Vo (FNV)
Hash, 1991. URL: http://isthe.com/chongo/tech/comp/
fnv/. 5

[Gla04] GLANVILLE R. S.: Texture bombing. In GPU Gems, Fernando
R., (Ed.). Addison-Wesley, 2004, pp. 323-338. 3

[GLLDI12] GALERNE B., LAGAE A., LEFEBVRE S., DRETTAKIS G.:
Gabor noise by example. ACM Transactions on Graphics (Proceedings
of ACM SIGGRAPH 2012) 31, 4 (July 2012), 73:1-73:9. doi:10.
1145/2185520.2335424. 2

[JB83] JULEsz B., BERGEN J. R.: Human factors and behavioral
science: Textons, the fundamental elements in preattentive vision
and perception of textures. Bell System Technical Journal 62, 6
(1983), 1619-1645. URL: https://onlinelibrary.wiley.
com/doi/abs/10.1002/73.1538-7305.1983.tb03502.x
arXiv:https://onlinelibrary.wiley.com/doi/
pdf/10.1002/75.1538-7305.1983.tb03502.x, doi:
10.1002/73.1538-7305.1983.tb03502.x. 2

[KCODLO06] KoPF J., COHEN-OR D., DEUSSEN O., LISCHINSKI D.:
Recursive wang tiles for real-time blue noise. In ACM SIGGRAPH 2006
Papers on - SIGGRAPH '06 (2006), Association for Computing Machin-
ery (ACM). URL: http://dx.doi.org/10.1145/1179352.
1141916,doi1:10.1145/1179352.1141916. 3,5,8

[KDJO16] KAJI S., DEROUET-JOURDAN A., OCHIAI H.: Dappled
tiling. In Symposium on Mathematical Progress in Expressive Image
Synthesis (MEIS2016) (2016), vol. 69 of MI Lecture Note Series, Kyushu
University, pp. 18-27. 2,3, 5,6, 8

[KNL*15] KASPAR A., NEUBERT B., LISCHINSKI D., PAULY M.,
KoPF J.: Self tuning texture optimization. Computer Graphics Fo-
rum 34, 2 (may 2015), 349-359. URL: http://dx.doi.org/10.
1111/cgf.12565,doi:10.1111/cgf.12565.2,7,8

[KP80] KLARNER D., POLLACK J.: Domino tilings of rect-
angles with fixed width. Discrete Mathematics 32, 1 (1980),
45 - 52. URL: http://www.sciencedirect.com/
science/article/pii/0012365X80900989, doi:https:
//doi.org/10.1016/0012-365X(80)90098-9.3

© 2019 The Author(s)
Computer Graphics Forum © 2019 The Eurographics Association and John Wiley & Sons Ltd.

[KSE*03] KWATRA V., SCHODL A., ESSA 1., TURK G., BOBICK A.:
Graphcut textures: Image and video synthesis using graph cuts. In ACM
SIGGRAPH 2003 Papers on - SIGGRAPH '03 (2003), Association for
Computing Machinery (ACM). URL: http://dx.doi.org/10.
1145/1201775.882264,do1:10.1145/1201775.882264. 2

[LDO5] LAGAE A., DUTRE P.: A procedural object distribution
function. ACM Transactions on Graphics 24, 4 (October 2005),
1442-1461. URL: http://doi.acm.org/10.1145/1095878.
1095888,d0i1:10.1145/1095878.1095888. 2,3

[LDGO1] LEGAKISJ., DORSEY J., GORTLER S.: Feature-based cellular
texturing for architectural models. In Proceedings of the 28th Annual
Conference on Computer Graphics and Interactive Techniques (New
York, NY, USA, 2001), SIGGRAPH 01, ACM, pp. 309-316. URL:
http://doi.acm.org/10.1145/383259.383293, doi:10.
1145/383259.383293.2,3

[LHO6] LEFEBVRE S., HOPPE H.: Appearance-space texture synthesis.
In ACM SIGGRAPH 2006 Papers on - SIGGRAPH '06 (2006), Asso-
ciation for Computing Machinery (ACM). URL: http://dx.doi.
org/10.1145/1179352.1141921, doi:10.1145/1179352.
1141921.2,7

[LHVTI17] Lot H., HurTUT T., VERGNE R., THOLLOT J.: Pro-
grammable 2d arrangements for element texture design. ACM
Trans. Graph. 36, 4 (May 2017). URL: http://doi.acm.
org/10.1145/3072959.2983617, do1:10.1145/3072959.
2983617.3

[LLC*10] LAGAE A., LEFEBVRE S., COOK R., DEROSE T., DRET-
TAKIS G., EBERT D., LEwWIS J., PERLIN K., ZWICKER M.: A Sur-
vey of Procedural Noise Functions. Computer Graphics Forum (2010).
doi:10.1111/9.1467-8659.2010.01827.x. 2

[LLDD09] LAGAE A., LEFEBVRE S., DRETTAKIS G., DUTRE P.: Pro-
cedural noise using sparse gabor convolution. ACM Transactions on
Graphics (Proceedings of ACM SIGGRAPH 2009) 28, 3 (July 2009),
54-64. do1:10.1145/1531326.1531360. 3

[LMMO2] Lobp1 A., MARTELLO S., MONACI M.: Two-dimensional
packing problems: A survey. European Journal of Operational Research
141, 2 (2002), 241 — 252. URL: http://www.sciencedirect.
com/science/article/pii/S0377221702001236, doi:
https://doi.org/10.1016/S0377-2217(02)00123-6.3

[Miy90] MIYATA K.: A method of generating stone wall patterns. In
Proceedings of the 17th Annual Conference on Computer Graphics
and Interactive Techniques (New York, NY, USA, 1990), SIGGRAPH
90, ACM, pp. 387-394. URL: http://doi.acm.org/10.1145/
97879.97921,d0i:10.1145/97879.97921. 3,7

[Per85] PERLIN K.: An image synthesizer. SIGGRAPH Comput. Graph.
19, 3 (July 1985), 287-296. URL: http://doi.acm.org/10.
1145/325165.325247,d01:10.1145/325165.325247. 3

[RDDM17] RAAD L., DAVY A., DESOLNEUX A., MOREL J.-M.: A
survey of exemplar-based texture synthesis. Annals of Mathematical Sci-
ences and Applications (2017), To appear. 2

[SD10] SCHLOMER T., DEUSSEN O.: Semi-stochastic tilings for
example-based texture synthesis. Computer Graphics Forum 29, 4 (aug
2010), 1431-1439. URL: http://dx.doi.org/10.1111/7.
1467-8659.2010.01740.x, doi:10.1111/3.1467-8659.
2010.01740.x%. 3

[SP16] SANTONI C., PELLACINI F.: gtangle: A grammar for the pro-
cedural generation of tangle patterns. ACM Trans. Graph. 35, 6 (Nov.
2016), 182:1-182:11. URL: http://doi.acm.org/10.1145/
2980179.2982417,do1:10.1145/2980179.2982417. 3

[SRVT14] SALVATI M., Ruiz VELASCO E., TAKAO K.: The brush
shader: A step towards hand-painted style background in cg, 2014. 3,
5

[Sta97] STAM l.: Aperiodic Texture Mapping. Tech. rep., ERCIM, 1997.
3

[VSLD13] VANHOEY K., SAUVAGE B., LARUE F., DISCHLER J.-M.:


https://doi.org/10.1007/BF00344396
https://doi.org/10.1007/BF00344396
https://doi.org/10.1007/BF00344396
http://dx.doi.org/10.1145/1201775.882265
http://dx.doi.org/10.1145/1201775.882265
https://doi.org/10.1145/1201775.882265
http://dx.doi.org/10.1145/2699641
https://doi.org/10.1145/2699641
http://www.combinatorics.org/Volume_18/Abstracts/v18i1p109.html
http://www.combinatorics.org/Volume_18/Abstracts/v18i1p109.html
http://isthe.com/chongo/tech/comp/fnv/
http://isthe.com/chongo/tech/comp/fnv/
https://doi.org/10.1145/2185520.2335424
https://doi.org/10.1145/2185520.2335424
https://onlinelibrary.wiley.com/doi/abs/10.1002/j.1538-7305.1983.tb03502.x
https://onlinelibrary.wiley.com/doi/abs/10.1002/j.1538-7305.1983.tb03502.x
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/j.1538-7305.1983.tb03502.x
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/j.1538-7305.1983.tb03502.x
https://doi.org/10.1002/j.1538-7305.1983.tb03502.x
https://doi.org/10.1002/j.1538-7305.1983.tb03502.x
http://dx.doi.org/10.1145/1179352.1141916
http://dx.doi.org/10.1145/1179352.1141916
https://doi.org/10.1145/1179352.1141916
http://dx.doi.org/10.1111/cgf.12565
http://dx.doi.org/10.1111/cgf.12565
https://doi.org/10.1111/cgf.12565
http://www.sciencedirect.com/science/article/pii/0012365X80900989
http://www.sciencedirect.com/science/article/pii/0012365X80900989
https://doi.org/https://doi.org/10.1016/0012-365X(80)90098-9
https://doi.org/https://doi.org/10.1016/0012-365X(80)90098-9
http://dx.doi.org/10.1145/1201775.882264
http://dx.doi.org/10.1145/1201775.882264
https://doi.org/10.1145/1201775.882264
http://doi.acm.org/10.1145/1095878.1095888
http://doi.acm.org/10.1145/1095878.1095888
https://doi.org/10.1145/1095878.1095888
http://doi.acm.org/10.1145/383259.383293
https://doi.org/10.1145/383259.383293
https://doi.org/10.1145/383259.383293
http://dx.doi.org/10.1145/1179352.1141921
http://dx.doi.org/10.1145/1179352.1141921
https://doi.org/10.1145/1179352.1141921
https://doi.org/10.1145/1179352.1141921
http://doi.acm.org/10.1145/3072959.2983617
http://doi.acm.org/10.1145/3072959.2983617
https://doi.org/10.1145/3072959.2983617
https://doi.org/10.1145/3072959.2983617
https://doi.org/10.1111/j.1467-8659.2010.01827.x
https://doi.org/10.1145/1531326.1531360
http://www.sciencedirect.com/science/article/pii/S0377221702001236
http://www.sciencedirect.com/science/article/pii/S0377221702001236
https://doi.org/https://doi.org/10.1016/S0377-2217(02)00123-6
https://doi.org/https://doi.org/10.1016/S0377-2217(02)00123-6
http://doi.acm.org/10.1145/97879.97921
http://doi.acm.org/10.1145/97879.97921
https://doi.org/10.1145/97879.97921
http://doi.acm.org/10.1145/325165.325247
http://doi.acm.org/10.1145/325165.325247
https://doi.org/10.1145/325165.325247
http://dx.doi.org/10.1111/j.1467-8659.2010.01740.x
http://dx.doi.org/10.1111/j.1467-8659.2010.01740.x
https://doi.org/10.1111/j.1467-8659.2010.01740.x
https://doi.org/10.1111/j.1467-8659.2010.01740.x
http://doi.acm.org/10.1145/2980179.2982417
http://doi.acm.org/10.1145/2980179.2982417
https://doi.org/10.1145/2980179.2982417

A. Derouet-Jourdan, M. Salvati & T. Jonchier / Generating Stochastic Wall Patterns On-the-fly with Wang Tiles

On-the-fly multi-scale infinite texturing from example. ACM Transac-
tions on Graphics 32, 6 (nov 2013), 1-10. URL: http://dx.doi.
org/10.1145/2508363.2508383, doi1:10.1145/2508363.
2508383.2

[Wan61] WANG H.: Proving theorems by pattern recognition II. Bell
System Technical Journal 40 (1961), 1-42. 3

[Wei04] WEI L.-Y.: Tile-based texture mapping on graphics hardware.
In Proceedings of the ACM SIGGRAPH/EUROGRAPHICS conference
on Graphics hardware - HWWS '04 (2004), Association for Comput-
ing Machinery (ACM). URL: http://dx.doi.org/10.1145/
1058129.1058138,d01:10.1145/1058129.1058138. 3

[Wor96] WORLEY S.: A cellular texture basis function. In Proceed-
ings of the 23rd Annual Conference on Computer Graphics and Inter-
active Techniques (New York, NY, USA, 1996), SIGGRAPH *96, ACM,
pp. 291-294. URL: http://doi.acm.org/10.1145/237170.
237267,do1:10.1145/237170.237267. 3,5

[YBY*13] YEH Y.-T., BREEDEN K., YANG L., FISHER M., HANRA-
HAN P.: Synthesis of tiled patterns using factor graphs. ACM Transac-
tions on Graphics 32, 1 (jan 2013), 1-13. URL: http://dx.doi.
org/10.1145/2421636.2421639, doi:10.1145/2421636.
2421639.2

A. Base case solver

We separate the 16 cases for the equalities H; j1» = H; ; Hiy1,j =
Hit1,j+2 Vi.j+1 = Vit2,j+1 Vi,j = Vit2, - The solutions are given as
4 values for respectively Vi ji1, Hj jv1, Vier,j and Hiyq ji1.

1. solver 0000

o Viit1,Hij,Viro j Hit1,j+2

o Virojr1,H;j12,Vij Hiv1,j

2. solver 0001

o vpr(i+1,j4+ 1,V i1, Viga jr1) Hiji2, Vi Hiv 1, j12

o Vigo w1 Hi j42,Vijhao(i+ 1, j+ 1, Hiyy j,Hit1 j12)
o Viitt,hao(i,j+ 1, H; j12,H; j), Vi j, Hiy1,j42

3. solver 0010
o Viivt, Hijvar (i+ 1,7,V j,Viga i), Hig1,j

o Vi1, Hij,Vigo jhar(i+ 1, j+ 1, Hiyy j, Hit1,j12)
o Viitt:hao(i,j+1,H; j12,H; j), Vi j, Hiy1

4. solver 0011
o Viittohao(i,j + 1,H; j42,H; j), Vi j, hao(i + 1,j +
LHi 1, Hit1,j42)

o Viitt, Hij,var(i+1,4,Vij,Viga ;) Hig 1,
o vpr(i+1,j4+ 1,V jv1,Viga jr1) Hijr2, Vi Hiv 1, j12

5. solver 0100
o Viitt,hao(i,j+ 1,H; j12,H; j), Vi j, Hiy1

o vor(i+1,j4+ 1,V jy1,Vig2j41) Hijv2, Vi js Hiv1,j
o Viivt, Hijvar (i+ 1,7,V j,Viya j) Hiv1,j

6. solver 0101

o Viitt,Hij,var(i+1,1,Vij,Viga i) Hi1,j

o Vipo jr1,Hi jy2, Vi johao (i+ 1, j+ 1, Hiyy j, Hiy1,j42)
7. solver 0110

o v (i4+ 1,7+ 1LV, ji1,Vigo j+1), Hi j2,Vij, Hir1
o Vi jr1,Hij,Vigo jyhao(i+ 1, j+ 1, Hiy j, Hit1,j12)

8. solver 0111

o Viivt,hao(i,j + L H; ji2,Hi ), Vi jhap (i + 1, +
LHi1 j,Hiy1,j+2)

9. solver 1000

o Viva i1, Hijv2,Vieo, johap (i4- 1, j+ L Hyy 1, Hiy 1 jy2)

o v (i+ 1,74+ 1,Vi j11,Viga, j+1), Hi jv2, Viea, j, Hiv1 j12
o Vipo jr 1, Hi jyo,var (i4+ 1,7,V j,Viga,j) Hiv1

10. solver 1001

o Vipo jr 1, Hi jy2,van (i4+ 1,7,V j,Viga i) Hiv1
o Viittohao(i,j+ 1, H; j10,H; j), Vi j . Hiv1 j42

11. solver 1010

o vpa(i+ 1, j+ 1,V ji1,Viya, jr1) Hijra, Viva,js Hiv1 jr2
o Vi jrt,hao(i,j+ 1L,H; j10,H; j), Vi j, Hiy1

12. solver 1011

o Viitt:har(i,j + 1,H; j12,Hij),Vij  hao(i + 1,j +
LHip1 j,Hit1,j4+2)

13. solver 1100

o var(i + 1,7 4+ LVij1,Visa ji1), Hi jr2,vao (i +
1,7, Vij,Vira,j) Hiv1,j
o Viitt,har(i,j+ 1, H; j10,H; j), Vi j, Hiy1
o Viva i1, Hijv2,Viea, jrhao (i4 1, j+ 1, Hy 1 j, Hiy1,j42)

14. solver 1101

o vao(i + 1,7+ LVijy1,Visa ji1), Hi jr2,var (i +
1,7, Vij,Viva,j) Hiv1,j

15. solver 1110

o vor(i + 1,7+ LVijy1,Vigo,j+1), Hi jo,var (i +
1, jVijsViva ), Hiv,j

16. solver 1111

o vio(i + 1,7+ L,V ji1,Vig,j41) Hi j2,var (i +
17j7‘/i.jvvi+2,j)7Hi+l,j

o Viittshao(i,j + 1,H; ji2,Hij),Vij  hao(i + 1,j +
L Hi1,j,Hiy1,j42)

with v4; and vy (resp. hy; and hgp) to compute random colors
different from its input:

m ifm<c

van(i,j,C):{ m+1 ifm>c
where m = V(i, j)%(nc — 1)
m' if m’ < min(cy,c)
var(iy jycr,02) =<4 m' +1  if min(cy,cp) <m' < max(cy,cp) — 1
m' +2  if m’ > max(cy,cp) — 1

where m’ = V(i, j)%(nc —2).

© 2019 The Author(s)
Computer Graphics Forum © 2019 The Eurographics Association and John Wiley & Sons Ltd.


http://dx.doi.org/10.1145/2508363.2508383
http://dx.doi.org/10.1145/2508363.2508383
https://doi.org/10.1145/2508363.2508383
https://doi.org/10.1145/2508363.2508383
http://dx.doi.org/10.1145/1058129.1058138
http://dx.doi.org/10.1145/1058129.1058138
https://doi.org/10.1145/1058129.1058138
http://doi.acm.org/10.1145/237170.237267
http://doi.acm.org/10.1145/237170.237267
https://doi.org/10.1145/237170.237267
http://dx.doi.org/10.1145/2421636.2421639
http://dx.doi.org/10.1145/2421636.2421639
https://doi.org/10.1145/2421636.2421639
https://doi.org/10.1145/2421636.2421639

